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Abstract The problem of nonparametric estimation of finite population distribution function using multiplicative bias
correction technique is considered in this paper. A robust estimator of the finite population distribution function based on
multiplicative bias correction is derived with the aid of a super population model. The properties of the estimator are
developed and comparative study with the existing model based and design based estimators is carried to assess the
performance of the estimator developed using the simulated sets of data. It is observed that the estimator is asymptotically
unbiased and statistically consistent when certain conditions are satisfied. It has been shown that when the model-based
estimators are used in estimating the finite population total, there exists bias-variance trade-off along the boundary. The
multiplicative bias corrected estimator has recorded better results in estimating the finite population distribution function by
correcting the boundary problems associated with existing model based estimators. The simulation results led to the
suggestion that the multiplicative bias corrected estimator can be highly recommended in survey sampling estimation of the

finite population distribution function.
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1. Introduction

In most scenarios of sample survey, auxiliary information
is available for all elements in the population under
consideration. Auxiliary information aids in the prediction of
finite population parameters and as such it forms a central
part of sample surveys. The main idea of nonparametric
statistics is to make inferences about unknown quantities
without resorting to parametric reduction of the problem. It
therefore follows that a model-based approach is used to
increase the precision of the estimators by incorporating
auxiliary variables. As an approach to such a problem, a
super population model is used to describe the relationship
between the auxiliary variable and the study variable.
Various estimation procedures have been developed to
estimate the distribution of a random variable in the past
(Zhao et al., 2013).

(Chambers and Dunstan, 1986) studied a simple method
for estimating the distribution function and the associated
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quantiles from sample survey data. The study showed that
the model based estimator offers significant gains when there
exists a strong linear relationship between the survey
variable and the auxiliary variable. However, the estimator
tends to be positively biased when the true variance is
overstated and negatively biased when the true variance is
understated. Kuk (1993) used auxiliary information to
improve the estimation of population distribution function.
Empirical results suggest that the proposed estimator has
good robustness properties not enjoyed by the model-based
estimator of (Chambers and Dunstan, 1986). In survey
sampling, concern is with the proportion of values, say Y;, in
the finite population that are bounded by a given constant.
Such a proportion is one particular value of the distribution
function for the finite population. In particular, estimation of
the distribution function is an important objective mainly
because it helps to identify the proportion in the population
whose values for particular variables lie substantially below
or above the population average (Chambers and Dunstan,
1986).

Previously studied estimation procedures used kernel
smoothers which tend to have boundary problems and
require modifications at the boundary points. That is,
towards the boundary points the estimators exhibit trade-off
between the bias and variance of the estimators. However,
alternative bias reduction techniques have been formulated.
For a detailed review see Hardle (1986), (Muller and
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Stadmuller, 1987) and Fan (1992). This study therefore aims
at coming up with a nonparametric estimator for the
distribution function of finite populations using a bias
corrected technique to counter the shortcomings of the
previously studied methods of estimation. (Linton and
Nielsen, 1994) used the multiplicative bias correction
technique in estimating a nonparametric regression function
and the results obtained showed that the estimator of the
regression function had desirable properties compared to
existing estimators including solving the boundary problems.
Onsongo (2018) also used the approach by (Linton and
Nielsen, 1994) in estimating finite population total.

Outline of the paper

In section 2, we propose an estimator for finite population
distribution function using a bias correction technique.
Asymptotic properties of the estimator are derived in section
3. Empirical simulation of the results is given in section 4
and the conclusion of the findings is given in section 5.

2. Proposed Estimator

In this section, the exact procedure of estimating the
population distribution function is now presented.

Suppose that X;,X,,..,Xy are independent and
identically  distributed with  corresponding  survey
measurements Y;,Y,,...,Yy from a common univariate
distribution function.

The empirical distribution function for finite population is
then defined by

Fu(t) = <3N, I(y; <t) (1)

Where | denotes the indicator function of a given set and t
is the a - quantile.

Let s be a sample of n units drawn from a finite population
via simple random sampling without replacement and
jEr=p—s be the non-sampled units of the finite
population. Suppose that Y is the survey variable associated
with the auxiliary variable X. Then the auxiliary information
is known for all elements in the population while the survey
variable is only observed for the sample elements.

Under the model-based framework, X and Y are assumed
to follow a super population model. This study restricts
attention to the linear regression model

Y = u(x) + o(xy)e )
Fori=1,2,..,N.
Where the ¢;'s are independent and identically distributed
and E(Y) = u(x;) and
o?(x)fori=12,..,N
0 otherwise
Where u(x;) and o2(x;) are assumed to be smooth

Cov(¥, 1)) = {

E[ﬁn(x)/xl' 'xN] =

Then 5"7(;‘)) in equation (8) can be expanded as follows

Lawi (G DEY] =

functions of x;.

Using model (1) as a guide, the predictive form of the
proposed estimator of the distribution function under the
model based approach is

Fy(®) = t{Bies ! 0r SO+ Ljer I < 1)} ()

In this paper, the estimator for equation (3) is proposed as

Fupc(®) = +{Bies 101 < ) + By, At — 4x) )} (4)

Where fi(x;) is the model-based nonparametric estimator
for u(x;) and H(t — f(x;) ) is the estimated distribution
function of the residuals defined by e; = y; — fi(x;).

The task is to estimate the second part of equation (4) and
to do this, the multiplicative bias correction technique is
employed.

Suppose that (X,,Y;), (X, Y5),...,(Xy,Yy) are N
independent pairs of random variables (X,Y) with real

values.
Define a pilot smoother of the regression function as

i (x;) = Xy wi (x; Dy; ®)
Where w;(x; 1) are the Nadaraya-Watson kernel weights

defined by w;(x; 1) = % and | is the bandwidth.

Then the ratio B; = ﬁnjg(i) is a noisy estimate of the
inverse relative estimation error of the smoother [, given
by o

Bn(Xp)

(Burr et al., 2010) showed that this ratio significantly
smoothens out the regression function since the residuals in
the numerator will cancel out with the residuals in the
denominator.

Smoothing B; yields
a(x) = Xisawil D g = Ttn}gft) ©

Equation (6) can then be used as a multiplicative
correction of the pilot smoother in equation (5) which can
now be defined by

= wi (D)

fin O) = @ () I () )
Assumptions
The following assumptions are made in the estimation of
:un(xi)
1. The regression function

differentiable everywhere.
2. The bandwidth [ is such that [ - 0,nl - c0asn -

is twice continuously

0,
Using equation (6) in equation (7) easily yields
. Bin (x)
fi (x;) = Xz wi(x; 1) ;n(;i) Yi ®)
Now suppose that
=g wi (6 D p(Xy) = fin (%) C))
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Bn() _ Bn(®) _ En() _ (EnG)\ "L _ En() -1
= X X = X X i
Fn(x)  BEX) ~ HEa(®) (u(xi)) 1e.0) (1 + bn (x)) (1 + bn (X‘)) (10)

Bn()—En(x) _ FnGe)—R(X) _ ]
Where e b,(x) and oy b, (X;)

Applying the binomial expansion to (1 + b, (x)) % (1 + bn(Xi))_1 gives
(14b,() x (1+ bn(Xl-))_1 =[1+ b,()][1 = b,(X;) + b, (X;)?] which further reduces to
(1+bp(0)) X (14 b, (X)) = 1+ by (x) — b (Xy) + 11(x, X;) (1)
where 7;(x, X;) is the remainder term that involves the terms x and X;.

Using equation (11) in equation (10) yields

Bn(x) _ BEn(x)

T — 5D < [1 4 bp(x) — b (Xp) + 13(x, X)] 12)
Substituting equation (11) into equation (8) and using the model Y; = u(X;) + &; one obtains

fin ) = Bty wi e D) (B¢ [1 4 by (1) = bu(X) + 13 X1} (X)) + &) (13)
= n () = Eiy w0 D B ) + Sy wix; D B8 g + w(X) bn () = bu(X)])
+ T w06 D B e[, (1) = bu(XD] + Ty wii D 2B (e, X) (X)) + &) (14)

Using the assumption nl — <o, the remainder terms converge to zero in probability. Therefore r;(x, X)) [u(X;) + &] =
1 R
Op (H) and equation (14) reduces to

A () = Ty i D B2 ) 4+ 3y wi (o6 D B2 (e 4 (X)) by () — B (X1

ax;) ux;p)
I 1
+ Ty wi s ) B [, () = b (X1 + 05 () (15)
Our estimator for the distribution function for finite population therefore becomes
Hn(x)
[ Yjerw;(x; 1) ﬁ(X,—)H(Xf) +
=~ = An(x)
Fype = % Yies i O+ Tje H| t = | Zjerws(x; 1) X)) {gj + 1(X;)[bn () = by (X;)]} +
in(x) 1
S jer w0 D B [ba () = bu(X))] + 06 ()

3. Properties of the Estimator under Simple Random Sampling without
Replacement

3.1. Asymptotic Unbiasedness of the Proposed Estimator
The asymptotic bias of the nonparametric estimator is defined as

~E[Fypc — Fy(®)] (16)

where Fypc — Fy(t) is the estimated bias.
In order to estimate H(t) in equation (4), (Chambers et al., 1993) recommended local linear smoothing whereby H, is
estimated by averaging only over the sample residuals with X- values that are close enough to X ;.
Therefore H(t) _ Yieswijl(vi—R(xj))
YiesWij
sample units i with X; close to X; so that
~ " N ¥ Wij
H(t) = Yies wiiI (v — fi(x)) where wjj = ———

=
I Sieswij

where tis the a -quantile and w;; are the weights that only take non-zero values for

Therefore equation (4) becomes
Fusc(®) = +{Bies 101 < ) + Bjer Ties Wi 1(4 < 1)}
As aresult,
A 1 * A
E[Fysc(®)] = E [;{Zial(yl' S )+ Yjer Dies Wi 1(¢ < t)}]
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E[Fupc(®)] = - {Bies EU G < O] + Zjer Dies wiiE [1(8; < 1)1}
= E[Pusc(®)] = ZE, () + 1+ ¥jer Ties wij Fo(t) (17)
Next,
E[Fy(t)] = E[zZX 1y <) | = F(®) (18)
Substituting the results in equation (17) and equation (18) back to equation (16) yields
wElPuse = Fn (O] = 5 [F 5O + 5 Zjer Sieswis F.(0) = B (0]
= 2 E[Fupe — Fx(0)] = 5 F(6) = (558) B (1) since 3je, Tieswjj = 1

3.2. Asymptotic Variance of the Proposed Estimator

Thus Fypc(t) is asymptotically unbiased.
The estimated bias is given by

~ 1 X A N 1
Fypc — Fy(t) = ﬁZjErZiEs wil(yy —f; <t — Q) — ﬁZjErI(Yj <t)
Therefore the variance of the estimated bias is
- 1 * A ~ 1
Var|Fypc — Fy(t)] = Var [;Zjer DiesWii Iy — iy <t —fi;) — ;Zjerl(yj' =< t)]
PN 1 % A A
Var|Eysc — Fy@)] = F{Var(Zjer DieswWiil (i —fi; < t — i) +Var(Tje 1(y; < 1))} (19)
Since the errors are assumed to be independent and identically distributed and therefore have zero covariance.

Consider Var(Xje, Yieswiil (v — b < t — ;) and let ©(¢) = Ty wiil (yi — s < t — ;)
Then

VaT(Zjer Yies Wi*jl(yi - st— ﬁ])) = VaT(Zjer P, ®) = Y jer Zker Cov(F(), Pi (D)) (20)
With By (t) = Yies Wil i — fly < t — i)
Define H;(w) = P(y; —u; <u) = P(e; < u)
Cov (B)(6), Pt)) = Bies wiy wis [Hi (£~ max(iy, ) = Hile = i) )Hy(e — )| (21)
Suppose that i; < g, whenever j < k and suppose that the non-sampled units are labelled from 1 to N —n.
Then

Var(Ejer Sies Wil (vi — iy < t = 7)) = Tiee {Z0 ENZR wiswic |[Hi (£ — max(gy, i) ) — Hilt — 2, Hit — )| }(22)
Next,

Var(ZjerI(yj < t)) = Yjer Var[l(yj < t)] =(N- n)P(yj < t)[l — P(y]- < t)] (23)
Substituting equations (22) and (23) into equation (19) yields

- 1

[ZiES {Z?’:ﬁn Yot WiwWi [Hi (t - max(ﬁj'ﬁk)) — H;(t — f;)H(t - ﬁk)]} +(N-n)P(y; < t)[1-P(y; < t)]] (24)

4. Results

In this section, simulation experiments were done to study the performance of the multiplicative bias corrected estimator.

A population of 1, 000 auxiliary values x; are generated as independent and identically distributed uniform random
variables.

The corresponding survey values y i are generated using the super-population model

v; = u(x;) + & with the mean functions being linear, quadratic and cosine.

Nadaraya-Watson kernel weights are used in the smoothing of y; to obtain the rough estimator,

fn () = X w; (x; Dyj;, of the mean function (x;). A ratio g; = #}0 is evaluated and is smoothed further to obtain
the correction factor &(x;) which is then used together with the rough estimator to obtain the multiplicative bias corrected
estimator, f1,,(x;), of the mean function.
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The existing estimators for distribution functions for finite populations that were used for comparison with our developed
estimator Fypc(t) are:
i. By (t) = %Ziesl(yi < t)which was suggested by Nadaraya-Watson (1968).
ii. Fop(t) = % [Zies I(yi < ©) + Xjer G(t — @ — bx;)] (Chambers & Dunstan 1986)
i, Fryen(8) = = Ties 103 S ) + 2 55e, Gt — a — bxy) — (% - %) Yies G(t — @ — bx;) (Rao et al 1990).
iv. Fpy(t) =%[Ziesl(yi <)+ Yjer G(t — A(xj))] (Dorfman & Hall (1993) where 4 is the linear estimator of the
mean function.

Table 1 shows the unconditional Relative Mean Error (RME) and Relative Root Mean Error (RRME) for the estimators at
various values of the quantile a (i.e. 0.25, 0.5 and 0.75). Linear and quadratic mean functions were used to obtain the
tabulated results. Similar results and conclusions can be obtained using other mean functions such as sine, cosine, bump etc.

The unconditional Relative Mean Error and Relative Root Mean Error for the estimator Fy (t) are calculated as:

RME = le(t) {;R 20017 " (1) —FN(t)]} and RRME = FNl(t) \/{;R 2001757 (¢) —FN(t)]} respectively where r
represents the level of iteration.

Table 1. Unconditional Relative Mean Errors and Relative Root Mean Errors

Unconditional Relative Mean Error and Relative Root Mean Error
Linear Function Quadratic Function
a=0.25
Estimator RME RRME RME RRME
Fusc@® 0.005485 0.008889 0.000452 0.008575
Fyw(®) -1.347148 0.570421 -0.679841 0.46868
Fep(t) -3.387451 1.435164 -1.662266 1.14489
0 0.049355 0.135994 0.007001 0.082798
Fpu(t) -0.024113 0.036181 0.041498 0.417668
a=0.5
RME RRME RME RRME
Fysc(t) 0.000572 0.001902 0.000693 0.002504
Fyw(®) -0.485538 0.481123 -0.340887 0.364297
Eop(t) -0.671669 0.667073 -0.596499 0.638570
Frim (t) -0.009321 0.052715 0.002349 0.037726
Fou(t) -0.118574 0.061423 -0.013618 0.017422
a=0.75
RME RRME RME RRME
Fypc(t) 0.001265 0.004539 0.000385 0.001642
Fyw (® -0.42853 0.565463 0.35509 0.476310
Fep(t) -0.339878 0.449670 -0.337274 0.452659
Frien () 0.005271 0.045202 0.001099 0.033943
Epu(® -0.016679 0.028441 -0.010832 0.025169

Fypc(t) can be seen to be a very efficient estimator of the empirical distribution function at all levels of the a —quantile
followed closely by Frxp (t) and Fpy (t). Fp(t) proved to be a very inefficient estimator at all levels of a.

Further, graphical comparison of estimators was done which further affirmed the results tabulated above. Figures 1 & 2
gives a plot of all the estimators listed above.
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Figure 2. Plot of various Distribution functions using a quadratic function

F.,, overestimates the empirical distribution function at
all points while Fyp. and Frxp, (t) give an almost perfect
estimation of the empirical distribution function.On the other
hand Fpj underestimates the true function at some points
towards the lower tail while it overestimates the same
function at other points along the upper tail.

The conditional performance of the estimator was done
and was compared with the performance of the estimator.To
do this, 200 random samples, all of size 400, were selected
and the mean of the auxiliary values x; was computed for
each sample to obtain 200 values of X.

These sample means were then sorted in ascending order
and further grouped into clusters of size 20 such that a total
of 10 goups was realized. Further, group means of the means
of auxiliary variables was calculated to get X.

Empirical means and biases were then computed for all
the estimators Fypc(t) and Fpp(t).

The conditional biases were plotted against X to provide
a good understanding of the pattern generated. Figures 3 & 4
show the behavior of the conditional biases realized by all
the estimators of distribution functions.
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Figure 4. Absolute conditional biases for the estimators using a quadratic mean function

Fypc(t) and Fryp, (t) performed equally better than all
other estimators of the true distribution function and it can be
seen that sample balancing does not affect the performance
of the estimators.

5. Conclusions

In conclusion, using the results from Table 1 and the
Figures 3 & 4 Fypc(t) was found to be an efficient
estimator of the distribution function for finite population.
F., was found to be very inefficient of all the estimators
with large conditional bias compared to the other estimators.

Fypc(t) can therefore be used in estimating distribution

functions for various units in the population in various
sectors of the economy.
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